Fluctuational transitions across locally-disconnected and locally-connected fractal basin boundaries
نویسندگان
چکیده
We study fluctuational transitions in a discrete dynamical system that has two co-existing attractors in phase space, separated by a fractal basin boundary which may be either locally-disconnected or locally-connected. It is shown that, in each case, transitions occur via an accessible point on the boundary. The complicated structure of paths inside the locally-disconnected fractal boundary is determined by a hierarchy of homoclinic original saddles. The most probable escape path from a regular attractor to the fractal boundary is found for the each type of boundary using both statistical analyses of fluctuational trajectories and the Hamiltonian theory of fluctuations.
منابع مشابه
Fluctuational transitions across different kinds of fractal basin boundaries.
We study fluctuational transitions in discrete and continuous dynamical systems that have two coexisting attractors in phase space, separated by a fractal basin boundary which may be either locally disconnected or locally connected. Theoretical and numerical evidence is given to show that, in each case, the transition occurs via a unique accessible point on the boundary, both in discrete system...
متن کاملFluctuational Escape from Chaotic Attractors
Fluctuational transitions between two coexisting attractors are investigated. Two different systems are considered: the periodically driven nonlinear oscillator and the two-dimensional map introduced by Holmes. These two systems have smooth and fractal boundaries, respectively, separating their coexisting attractors. It is shown that, starting from a cycle embedded in the chaotic attractor, the...
متن کاملar X iv : n lin / 0 30 20 14 v 1 [ nl in . C D ] 6 F eb 2 00 3 Fluctuational transitions through a fractal basin boundary
Fluctuational transitions between two co-existing chaotic attractors, separated by a fractal basin boundary, are studied in a discrete dynamical system. It is shown that the mechanism for such transitions is determined by a hierarchy of homoclinic points. The most probable escape path from the chaotic attractor to the fractal boundary is found using both statistical analyses of fluctuational tr...
متن کاملOn the Structure of Certain Locally Compact Topological Groups
A locally compact topological group G is called an (H) group if G has a maximal compact normal subgroup with Lie factor. In this note, we study the problem when a locally compact group is an (H) group. Let G be a locally compact Hausdorff topological group. Let G0 be the identity component of G. If G/G0 is compact, then we say that G is almost connected. The structure of almost connected locall...
متن کاملUniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces
We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...
متن کامل